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Foreword 

The Gears of 

My Childhood 

BEFORE I WAS two years old I had developed an intense involve- 
ment with automobiles. The names of car parts made up a very 
substantial portion of my vocabulary: I was particularly proud of 
knowing about the parts of the transmission system, the gearbox, 
and most especially the differential. It was, of course, many years 
later before I understood how gears work; but once I did, playing 
with gears became a favorite pastime. I loved rotating circular ob- 
jects against one another in gearlike motions and, naturally, my 
first "erector set" project was a crude gear system. 

I became adept at turning wheels in my head and at making 
chains of cause and effect: "This one turns this way so that must 
turn that way s o . . . "  I found particular pleasure in such systems as 
the differential gear, which does not follow a simple linear chain of 
causality since the motion in the transmission shaft can be distrib- 
uted in many different ways to the two wheels depending on what 
resistance they encounter. I remember quite vividly my excitement 
at discovering that a system could be lawful and completely com- 
prehensible without being rigidly deterministic. 

I believe that working with differentials did more for my math- 
ematical development than anything I was taught in elementary 
school. Gears, serving as models, carried many otherwise abstract 
ideas into my head. I clearly remember two examples from school 
math. I saw multiplication tables as gears, and my first brush with 
equations in two variables (e.g., 3x + 4y = 10) immediately evoked 
the differential. By the time I had made a mental gear model of the 
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Foreword 

relation between x and y, figuring how many teeth each gear need- 
ed, the equation had become a comfortable friend. 

Many years later when I read Piaget this incident served me as a 
model for his notion of assimilation, except I was immediately 
struck by the fact that his discussion does not do full justice to his 
own idea. He talks almost entirely about cognitive aspects of as- 
similation. But there is also an affective component. Assimilating 
equations to gears certainly is a powerful way to bring old knowl- 
edge to bear on a new object. But it does more as well. I am sure 
that such assimilations helped to endow mathematics, for me, with 
a positive affective tone that can be traced back to my infantile ex- 
periences with cars. I believe Piaget really agrees. As I came to 
know him personally I understood that his neglect of the affective 
comes more from a modest sense that little is known about it than 
from an arrogant sense of its irrelevance. But let me return to my 
childhood. 

One day I was surprised to discover that some adults---even most 
adults---did not understand or even care about the magic of the 
gears. I no longer think much about gears, but I have never turned 
away from the questions that started with that discovery: How 
could what was so simple for me be incomprehensible to other peo- 
ple? My proud father suggested "being clever" as an explanation. 
But I was painfully aware that some people who could not under- 
stand the differential could easily do things I found much more dif- 
ficult. Slowly I began to formulate what I still consider the funda- 
mental fact about learning: Anything is easy if you can assimilate 
it to your collection of models. If you can't, anything can be pain- 
fully difficult. Here too I was developing a way of thinking that 
would be resonant with Piaget's. The understanding of learning 
must be genetic. It must refer to the genesis of knowledge. What an 
individual can learn, and how he learns it, depends on what models 
he has available. This raises, recursively, the question of how he 
learned these models. Thus the "laws of learning" must be about 
how intellectual structures grow out of one another and about how, 
in the process, they acquire both logical and emotional form. 

This book is an exercise in an applied genetic epistemology ex- 
panded beyond Piaget's cognitive emphasis to include a concern 
with the affective. It develops a new perspective for education re- 
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search focused on creating the conditions under which intellectual 
models will take root. For the last two decades this is what I have 
been trying to do. And in doing so I find myself frequently remind- 
ed of several aspects of my encounter with the differential gear. 
First, I remember that no one told me to learn about differential 
gears. Second, I remember that there was feeling, love, as well as 
understanding in my relationship with gears. Third, I remember 
that my first encounter with them was in my second year. If any 
"scientific" educational psychologist had tried to "measure" the ef- 
fects of this encounter, he would probably have failed. It had pro- 
found consequences but, I conjecture, only very many years later. 
A "pre- and post-" test at age two would have missed them. 

Piaget's work gave me a new framework for looking at the gears 
of my childhood. The gear can be used to illustrate many powerful 
"advanced" mathematical ideas, such as groups or relative motion. 
But it does more than this. As well as connecting with the formal 
knowledge of mathematics, it also connects with the "body knowl- 
edge," the sensorimotor schemata of a child. You can be the gear, 
you can understand how it turns by projecting yourself into its 
place and turning with it. It is this double relationship~both ab- 
stract and sensory~that  gives the gear the power to carry powerful 
mathematics into the mind. In a terminology I shall develop in lat- 
er chapters, the gear acts here as a transitional object. 

A modern-day Montessori might propose, if convinced by my 
story, to create a gear set for children. Thus every child might have 
the experience I had. But to hope for this would be to miss the es- 
sence of the story. I fell in love with the gears. This is something 
that cannot be reduced to purely "cognitive" terms. Something 
very personal happened, and one cannot assume that it would be 
repeated for other children in exactly the same form. 

My thesis could be summarized as: What the gears cannot do the 
computer might. The computer is the Proteus of machines. Its es- 
sence is its universality, its power to simulate. Because it can take 
on a thousand forms and can serve a thousand functions, it can ap- 
peal to a thousand tastes. This book is the result of my own at- 
tempts over the past decade to turn computers into instruments 
flexible enough so that many children can each create for them- 
selves something like what the gears were for me. 
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Chapter 6 

Powerful Ideas in 

Mind-Size.Bites 
"I  love your microworlds but is it physics? I 

don't  say it is not. But how can I decide?" 

- - A  teacher 

A COMMON DISTINCTION between two ways of knowing is 
often expressed as "knowing-that" versus "knowing-how" or as 
"propositional knowledge" versus "procedural knowledge" or again 
as "facts" versus "skills." In this chapter we talk about some of the 
many kinds of knowing that cannot be reduced to either term of 
this dichotomy. Important examples from everyday life are know- 
ing a person, knowing a place, and knowing one's own states of 
mind. In pursuit of our theme of using the computer to understand 
scientific knowing as rooted in personal knowing, we shall next look 
at ways in which scientific knowledge is more similar to knowing a 
person than similar to knowing a fact or having a skill. In this, we 
shall be doing something similar to how we used the Turtle to build 
bridges between formal geometry and the body geometry of the 
child. Here, too, our goal is to design conditions for more syntonic 
kinds of learning than those favored by the traditional schools. In 
previous chapters we have explored a paradox: Although most of 
our society classifies mathematics as the least accessible kind of 
knowledge, it is, paradoxically, the most accessible to children. In 

135 



M I N D S T O R M S  

this chapter we shall encounter a similar paradox in the domain of 
science. We shall look at ways in which the thinking of children has 
more in common with "real science" than "school science" has 
with the thinking either of children or of scientists. And once more 
we shall note a double paradox in the way computers enter into and 
influence this state of affairs. The introduction of the computer can 
provide a way out of the paradoxes, but it usually is used in ways 
that exacerbate them by reinforcing the paradoxical ways of think- 
ing about knowledge, of thinking about "school math" and "school 
science." 

Mathetically sophisticated adults use certain metaphors to talk 
about important learning experiences. They talk about getting to 
know an idea, exploring an area of knowledge, and acquiring sen- 
sitivity to distinctions that seemed ungraspably subtle just a little 
while ago. 

I believe that these descriptions apply very accurately to the way 
children learn. But when I asked students in grade schools to talk 
about learning, they used a very different kind of language, refer- 
ring mainly to facts they had learned and skills they had acquired. 
It seems very clear that school gives students a particular model of 
learning; I believe it does this not only through its way of talking 
but also through its practices. 

Skills and the discrete facts are easy to give out in controlled 
doses. They are also easier to measure. And it is certainly easier to 
enforce the learning of a skill than it is to check whether someone 
has "gotten to know" an idea. It is not surprising that schools em- 
phasize learning skills and facts and that students pick up an image 
of learning as "learning that" and "learning how." 

Working in Turtle microworlds is a model for what it is to get to 
know an idea the way you get to know a person. Students who work 
in these environments certainly do discover facts, make proposi- 
tional generalizations, and learn skills. But the primary learning 
experience is not one of memorizing facts or of practicing skills. 
Rather, it is getting to know the Turtle, exploring what a Turtle 
can and cannot do. It is similar to the child's everyday activities, 
such as making mudpies and testing the limits of parental author- 
i ty~al l  of which have a component of "getting to know." Teachers 
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often set up situations in which they claim that children are actual- 
ly getting to know this or that concept even though they might not 
realize it. Yet the Turtle is different~it  allows children to be delib- 
erate and conscious in bringing a kind of learning with which they 
are comfortable and familiar to bear on math and physics. And, as 
we have remarked, this is a kind of learning that brings the child 
closer to the mathetic practice of sophisticated adult learners. The 
Turtle in all its forms (floor Turtles, screen Turtles and Dynatur- 
ties) is able to play this role so well because it is both an engaging 
anthropomorphizable object and a powerful mathematical idea. As 
a model for what mathematical and scientific learning is about, it 
stands in sharp contrast to the methodology described by the fifth 
grader, Bill (mentioned in chapter 3), who told me that he learned 
math by making his mind a blank and saying it over and over. 

For me, getting to know a domain of knowledge (say, Newtonian 
mechanics or Hegelian philosophy) is much like coming into a new 
community of people. Sometimes one is initially overwhelmed by a 
bewildering array of undifferentiated faces. Only gradually do the 
individuals begin to stand out. On other occasions one is fortunate 
in quickly getting to know a person or two with whom an important 
relationship can develop. Such good luck may come from an intu- 
itive sense for picking out the "interesting" people, or it may come 
from having good introductions. Similarly, when one enters a new 
domain of knowledge, one initially encounters a crowd of new 
ideas. Good learners are able to pick out those who are powerful 
and congenial. Others who are less skillful need help from teachers 
and friends. But we must not forget that while good teachers play 
the role of mutual friends who can provide introductions, the actual 
job of getting to know an idea or a person cannot be done by a third 
party. Everyone must acquire skill at getting to know and a person- 
al style for doing it. 

Here we use an example from physics to focus the image of a do- 
main of knowledge as a community of powerful ideas, and in doing 
so take a step toward an epistemology of powerful ideas. Turtle 
microworlds illustrate some general strategies for helping a new- 
comer begin to make friends in such a community. A first strategy 
is to ensure that the learner has a model for this kind of learning; 
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working with Turtles is a good one. This strategy does not require 
that all knowledge be "Turtle-ized" or "reduced" to computational 
terms. The idea is that early experience with Turtles is a good way 
to "get to know" what it is like to learn a formal subject by "get- 
ting to know" its powerful ideas. I made a similar point in chapter 
2 when I suggested that Turtle geometry could be an excellent do- 
main for introducing learners to Polya's ideas about heuristics. 
This does not make heuristic thinking dependent on turtles or com- 
puters. Once Polya's ideas are thoroughly "known," they can be 
applied to other domains (even arithmetic). Our discussion in chap- 
ter 4 suggested that theoretical physics may be a good carrier for 
an important kind of meta-knowledge. If so, this would have impor- 
tant consequences for our cultural view of its role in the lives of 
children. We might come to see it as a subject suitable for early ac- 
quistion not simply because it explicates the world of things but be- 
cause it does so in a way that places children in better command of 
their own learning processes. 

For some people taking physics as a model for how to analyze 
problems is synonymous with a highly quantitative, formalistic ap- 
proach. And indeed, the story of what has happened when such dis- 
ciplines as psychology and sociology have taken physics as a model 
has often had unhappy endings. But there is a big difference in the 
kind of physics used. The physics that had a bad influence on social 
sciences stressed a positivistic philosophy of science. I am talking 
about a kind of physics that places us in firm and sharp opposition 
to the positivistic view of science as a set of true assertions of fact 
and of "law." The propositional content of science is certainly very 
important, but it constitutes only a part of a physicist's body of 
knowledge. It is not the part that developed first historically, it is 
not a part that can be understood first in the learning process, and 
it is, of course, not the part I am proposing here as a model for re- 
flection about our own thinking. We shall be interested in knowl- 
edge that is more qualitative, less completely specified, and seldom 
stated in propositional form. If students are given such equations as 
f = m a ,  E = I R ,  o r  P V  = R T  as the primary models of the knowl- 
edge that constitutes physics, they are placed in a position where 
nothing in their own heads is 1 kely to be recognized as "physics." 
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We have already seen that this is the kind of thing that puts them 
at very high risk as learners. They are on the road to dissociated 
learning. They are on the road to classifying themselves as incapa- 
ble of understanding physics. A different sense of what kind of 
knowledge constitutes physics is obtained by working with Turtles: 
Here a child, even a child who possesses only one piece of fragmen- 
tary, incompletely specified, qualitative knowledge (such as "these 
Turtles only understand changing velocities") can already do some- 
thing with it. In fact, he or she can start to work through many of 
the conceptual problems that plague college students. The frag- 
ment of knowledge can be used without even knowing how to repre- 
sent velocities quantitatively! It is of a kind with the intuitive and 
informal but often very powerful ideas that inhabit all of our heads 
whether we are children or physicists. 

This use of the computer to create opportunities for the exercise 
of qualitative thinking is very different from the use of computers 
that has become standard in high school physics courses. There it is 
used to reinforce the quantitative side of physics by allowing more 
complex calculations. Thus it shares some of the paradox we have 
already noted in the use of new technologies to reinforce education- 
al methods whose very existence is a reflection of the limitations of 
the precomputer period. As previously mentioned, the need for drill 
and practice in arithmetic is a symptom of the absence of condi- 
tions for the syntonic learning of mathematics. The proper use of 
computers is to supply such conditions. When computers are used 
to cure the immediate symptom of poor scores in arithmetic, they 
reinforce habits of dissociated learning. And these habits which ex- 
tend into many areas of life are a much more serious problem than 
weakness in arithmetic. The cure may be worse than the disease. 
There is an analogous argument about physics. Traditional physics 
teaching is forced to overemphasize the quantitative by the acci- 
dents of a paper-and-pencil technology which favors work that can 
produce a definite "answer." This is reinforced by a teaching sys- 
tem of using "laboratories" where experiments are done to prove, 
disprove, and "discover" already known propositions. This makes it 
very difficult for the student to find a way to constructively bring 
together intuitions and formal methods. Everyone is too busy fol- 
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lowing the cookbook. Again, as in the case of arithmetic, the com- 
puter should be used to remove the fundamental problem. How- 
ever, as things are today, the established image of school physics as 
quantitative and the established image of the computer reinforce 
each other. The computer is used to aggravate the already too- 
quantitative methodology of the physics classes. As in the case of 
arithmetic drill and practice, this use of the computer undoubtedly 
produces local improvements and therefore gets the stamp of ap- 
proval of the educational testing community and of teachers who 
have not had the opportunity to see something better. But through- 
out this book we have been developing the elements of a less quan- 
titative approach to computers in education. Now we directly ad- 
dress the concerns this shift in direction must raise for a serious 
teacher of physics. 

The quotation at the beginning of this chapter was spoken in 
some anguish by a teacher who manifestly liked working with Tur- 
tles but could not reconcile it with what she had come to define as 
"doing physics". The situation reflects a permanent dilemma faced 
by anyone who wishes to produce radical innovation in education, 
Innovation needs new ideas. I have argued that we should be pre- 
pared to undertake far-reaching reconceptualizations of classical 
domains of knowledge. But how far can this go? Education has a 
responsibility to tradition. For example, the job of the community 
of English teachers must be to guide their students to the language 
and literature as it exists and as it developed historically. They 
would be failing in their duty if instead they invented a new lan- 
guage, wrote their version of poetry, and passed on to the next gen- 
eration these fabricated entities in the place of the traditional ones. 
The concern of the teacher worried about whether working with 
Turtles is "really learning physics" is very serious. 

Is work with Turtles analogous to replacing Shakespeare by 
"easier," made-up literature? Does it bring students into contact 
with the intellectual products of Galileo, Newton, and Einstein or 
merely with an idiosyncratic invention that is neither marked by 
greatness nor tested by time? The question raises fundamental 
problems, among them" What is physics? And what is the potential 
influence of computation on understanding it? 
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Most curriculum designers have easy answers to these questions. 
They define elementary physics as what is taught in schools. Occa- 
sionally they move material usually taught in college down to high 
school, or bring in new topics of the same kind as the old. For ex- 
ample, modern particles are mentioned and the textbooks show 
schematically how a nuclear reactor works. Even the more vision- 
ary curriculum reformers stayed within the conceptual framework 
defined by equations, quantitative laws, and laboratory experi- 
ments. Thus, they could feel secure that they were really "teaching 
physics." The possibility opened by the computer of a new kind of 
activity and of a new relationship to ideas poses problems of re- 
sponsibility toward the cultural heritage. I take this responsibility 
seriously but cannot feel that I serve it by taking shelter behind the 
existing curriculum. One cannot accept this shelter without seri- 
ously considering the question of whether school science is not al- 
ready in the position of the hypothetical English teacher who 
taught an ersatz form of English because it seemed to be more 
teachable. I believe that this is the case. 

In chapter 5, I suggested that it is "school physics" rather than 
"Turtle physics" that betrays the spirit of "real physics." Here I 
pursue my argument by talking about components of physics that 
are even further removed than Dynaturtles from the traditional 
curriculum. These are very general, usually qualitative, intuitive 
ideas or "frames" used by physicists to think about problems be- 
fore they can even decide what quantitative principles apply. 

I ask readers who may not be familiar with such qualitative 
thinking in physics to follow a hypothetical conversation between 
two great physicists. 

Many millions of students have grown up believing that Galileo 
refuted Aristotle's expectation that the time taken for an object to 
fall to the ground is proportional to its weight by dropping cannon- 
balls from the tower of Pisa. Galileo's experiment is supposed to 
have proved that except for minor perturbations due to air resis- 
tance, a heavy and a light cannonball would, if dropped together, 
reach the ground together. In fact it is extremely unlikely that Ga- 
lileo performed any such experiment. But whether he did or did not 
is less interesting than the fact that he would not have had the 
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slightest doubt about the outcome of the experiment. In order to 

convey a sense of the kind of thinking that could have given him 

this assurance, we shall go through a hypothetical dialog between 

two imaginary characters,  G A L  and ARI.  

GAL: Look, your theory has got to be wrong. Here's a two-pound and a 
one-pound ball. The two-pound ball takes two seconds to fall to the 
ground. Tell me, how long do you think the one-pound ball would 
need? 

ARI: I suppose it would take four seconds. Anyway, much more than 
two seconds. 

GAL: I thought you would say that. But now please answer another 
question. I am about to drop two one-pounders simultaneously. How 
long will the pair of them take to reach the ground? 

ARI: That's not another question. I gave my opinion that one-pound 
balls take four seconds. Two of them must do the same. Each falls 
independently. 

GAL: You are consistent with yourself if two bodies are two bodies, not 
one. 

ARI: As they a r e . , ,  of course. 
GAL: But now if I connect them by a gossamer t h r ead . . ,  is this now 

two bodies or one? Will it (or they) take two seconds or four to fall 
to the ground? 

ARI: I am truly confused. Let me think . . . .  It's one body, but then it 
should fall for four seconds before reaching the earth. But then this 
would mean that a thread finer than silk could slow down a furiously 
falling ball of iron. It seems impossible. But if I say it is two bodies 
. . .  I am in deep trouble. What is a body? How do I know when one 
becomes two? And if I cannot know then how sure can I be of my 
laws of falling bodies? 

From a strictly logical point of view, GAL's  argument  is not abso- 

lutely compelling. One can imagine "fixes" for ARI ' s  theory. For 

example, he could propose that  the time taken might depend on the 

form as well as the weight of the body. This would allow him the 

possibility that  a two-pound body made of two cannonballs and 

gossamer threads fall more slowly than a two-pound sphere of iron. 

But in fact the kind of argument  used by GAL is subversive of the 

kind of theory expounded by ARI,  and historically, it is highly 

plausible that  the great  conversion from Aristotelian thinking was 

fueled by such arguments.  No single a rgument  could by itself con- 
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vert Aristotle, for whom the theory of falling objects was an ele- 
ment in a mutually supporting web. But as GAL's way of thinking 
gained currency, the Aristotelian system was eroded. Indeed I con- 
tend that arguments of this kind, as opposed to the apparently 
more compelling arguments from precise facts and equations, play 
an essential role in the evolution of thinking, both on the historical 
scale of the evolution of science itself and on the personal scale of 
the development of the individual learner. 

ARI would have been far better able to defend himself had GAL 
argued from specific facts or calculations, which might allow quib- 
bles about their conditions of applicability and allow themselves to 
be compartmentalized. The hard punch of GAL's argument comes 
from the fact that it mobilizes ARI's own intuitions about the na- 
ture of physical objects and about the continuity of natural effects 
(thinner than silk versus furiously falling iron). To a logician this 
argument might seem less compelling. But as empathetic fellow 
humans we find ourselves squirming in confusion with ARI. 

There is a lot to be learned by thinking through the issues raised 
by this dialogue, simplistic as it is. First we note that GAL is not 
just being cleverer than ARI" He knows something that ARI seems 
not to know. In fact, if we look carefully we see that GAL skillfully 
deploys several powerful ideas. Most striking is his principal idea of 
looking at a two-pound object as made up of two one-pound ob- 
jects, seeing the whole as additively made of whatever parts we 
care to divide it into. Stated abstractly this idea sounds trivial in 
some contexts and simply false in others: We are used to being re- 
minded that "the whole is more than the sum of its parts." But we 
should not treat it as a proposition to be judged by the criterion of 
truth and falsity. It is an idea, an intellectual tool, and one that has 
proved itself to be enormously powerful when skillfully used. 

GAL's idea is powerful and is part of the intellectual tool kit of 
every modern mathematician, physicist, or engineer. It is as impor- 
tant in the history and in the learning of physics as the kind of 
knowledge that fits into propositions or equations. But one would 
not know this from looking at textbooks. GAL's idea is not given a 
name, it is not attributed to a historical scientist, it is passed over in 
silence by teachers. Indeed, like most of intuitive physics, this 
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knowledge seems to be acquired by adult physicists through a pro- 
cess of Piagetian learning, without, and often in spite of, deliberate 
classroom teaching. Of course, my interest in recognizing the exis- 
tence of these informally learned, powerful intuitive ideas is not to 
remove them from the scope of Piagetian learning and place them 
in a curriculum" There are other ways to facilitate their acquisition. 
By recognizing their existence we should be able to create condi- 
tions that will foster their development, and we certainly can do a 
lot to remove obstacles that block them in many traditional learn- 
ing environments. 

GAL's dialogue with ARI has something to teach us about one 
of the most destructive blocks to learning: the use of formal reason- 
ing to put down intuitions. 

Everyone knows the unpleasant feeling evoked by running into a 
counterintuitive phenomenon where we are forced, by observation 
or by reason, to acknowledge that reality does not fit our expecta- 
tions. Many people have this feeling when faced with the perpetual 
motion of a Newtonian particle, with the way a rudder turns a 
boat, or with the strange behavior of a toy gyroscope. In all these 
cases intuition seems to betray us. Sometimes there is a simple 
"fix"; we see that we made a superficial mistake. But the interest- 
ing cases are those where the conflict remains obstinately in place 
however much we ponder the problem. These are the cases where 
we are tempted to conclude that "intuition cannot be trusted." In 
these situations we need to improve our intuition, to debug it, but 
the pressure on us is to abandon intuition and rely on equations in- 
stead. Usually when a student in this plight goes to the physics 
teacher saying, "I think the gyroscope should fall instead of stand- 
ing upright," the teacher responds by writing an equation to prove 
that the thing stands upright. But that is not what the student 
needed. He already knew that it would stay upright, and this 
knowledge hurt by conflicting with intuition. By proving that it will 
stand upright the teacher rubs salt in the wound but does nothing 
to heal it. What the student needs is something quite different: bet- 
ter understanding of himself, not of the gyroscope. He wants to 
know why his intuition gave him a wrong expectation. He needs to 
know how to work on his intuitions in order to change them. We 
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see from the dialogue that GAL is an expert at how to manipulate 
intuitions. He does not force ARI into rejecting intuition in favor of 
calculation. Rather he forces him to confront a very specific aspect 
of his intuitive thinking: how he thinks about objects. One suspects 
from the dialogue that GAL is used to understanding objects by 
thinking of them as composed of parts, or subobjects, while ARI is 
used to thinking of objects more globally, as undivided wholes with 
global properties such as shape and weight. 

We might seem to have strayed far from our discussion of com- 
puters. But the interaction between GAL and ARI is close to an 
important kind of interaction between children and computers and 
between children and instructors via computers. GAL tried to 
make ARI confront and work through his intuitive ways of think- 
ing about objects, and ARI might be skillful enough to do so. But 
what can children do to confront their intuitions? 

Of course the question is rhetorical in that I know that children 
think a great deal about their thinking. They do worry about their 
intuitions. They do confront them and they do debug them. If they 
did not the idea of making them do so would indeed be utopian. 
But since they do it already, we can provide materials to help them 
do it better. 

I see the computer as helping in two ways. First, the computer 
allows, or obliges, the child to externalize intuitive expectations. 
When the intuition is translated into a program it becomes more 
obtrusive and more accessible to reflection. Second, computational 
ideas can be taken up as materials for the work of remodeling intu- 
itive knowledge. The following analysis of a well-known puzzle is 
used to illustrate how a Turtle model can help bridge the gap be- 
tween formal knowledge and intuitive understanding. We have seen 
many examples in incidents where children work with computers. 
Here I shall convey a sense of what this means by inviting you to 
work on a situation where your intuitions will come into conflict. 

The purpose in working on the problem is not to "get the right 
answer," but to look sensitively for conflict between different ways 
of thinking about the problem: for example, between two intuitive 
ways of thinking or between an intuitive and a formal analysis. 
When you recognize conflicts, the next step is to work through 
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them until you feel more comfortable. When I did this, I found that 
the Turtle model was extremely helpful in resolving some of the 
conflicts. But my reaction is undoubtedly shaped by my positive 
feelings about Turtles. 

Imagine a string around the circumference of the earth, which 
for this purpose we shall consider to be a perfectly smooth sphere, 
four thousand miles in radius. Someone makes a proposal to place 
the string on six-foot-high poles. Obviously this implies that the 
string will have to be longer. A discussion arises about how much 
longer it would have to be. Most people who have been through 
high school know how to calculate the answer. But before doing so 
or reading on try to guess" Is it about one thousand miles longer, 
about a hundred, or about ten? 

Figure 15 

The figure shows a string around the earth supported by poles of 
greatly exaggerated height. Call the radius of the earth R and the 
height of the poles h. The problem is to estimate the difference in 
length between the outer circumference and the true circumference. 
This is easy to calculate from the formula: 

CIRCUMFERENCE = 2~ × RADIUS 

$o the difference must be 

2~(R'l'h) - 2 ~ R  

which is simply 2:h.  

But the challenge here is to "intuit" an approximate answer rather 
than to "calculate" an exact one. 
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Most people who have the discipline to think before calculat- 
i n g ~ a  discipline that forms part of the know-how of debugging 
one's intuitions~experience a compelling intuitive sense that "a 
lot" of extra string is needed. For some the source of this conviction 
seems to lie in the idea that something is being added all around 
the twenty-four thousand miles (or so) of the earth's circumfer- 
ence. Others attach it to more abstract considerations of propor- 
tionality. But whatever the source of the conviction may be it is 
"incorrect" in anticipating the result of the formal calculation, 
which turns out to be a little less than forty feet. The conflict be- 
tween intuition and calculation is so powerful that the problem has 
become widely known as a teaser. And the conclusion that is often 
drawn from this conflict is that intuitions are not to be trusted. In- 
stead of drawing this conclusion, we shall attempt to engage the 
reader in a dialog in order to identify what needs to be done to alter 

this intuition. 
As a first step we follow the principle of seeking out a similar 

problem that might be more tractable. And a good general rule for 
simplification is to look for a linear version. Thus we pose the same 
problem on the assumption of a "square earth." 

J 

Figure 16a 

The string on poles is assumed to be at distance h from the square. 
Along the edges the string is straight. As it goes around the corner it 
follows a circle of radius h. The straight segments of the string have 
the same length as the edges of the square. The extra length is all at 
the corners, in the four quarter-circle pie slices. The four quarter cir- 
cles make a whole circle of radius h. So the "extra string" is the cir- 
cumference of this circle, that is to say 2~rh. 
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f 

J 
Figure 16b 

Increasing the size of the square does not change the quarter-circle 
pie slices. So the extra string needed to raise a string from the ground 
to height h is the same for a very small square earth as for a very large 
one. 

The diagram gives us a geometric way to see that the same 
amount of extra string is needed here as in the case of the circle. 
This is itself quite startling. But more startling is the fact that we 
can see so directly that the size of the square makes no difference 
to how much extra string is needed. We could have calculated this 
fact by formula. But doing so would have left us in the same diffi- 
culty. By "seeing" it geometrically we can bring this case into line 
with our intuitive principle: Extra string is needed only where the 
earth curves. Obviously no extra string is needed to raise a straight 
line from the ground to a six-foot height. 

Unfortunately, this way of understanding the square case might 
seem to undermine our understanding of the circular case. We have 
completely understood the square but did so by seeing it as being 
very much different from the circle. 

But there is another powerful idea that can come to the rescue. 

This is the idea of intermediate cases: When there is a conflict be- 
tween two cases, look for intermediates, as GAL in fact did in con- 
structing a series of intermediate objects between the two one- 
pound balls and one two-pound ball. But what is intermediate 
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Y 

Figure 17 
In the octagon, too, the "extra string" is all in the pie slices at the 

corners. If you put them together they form a circle of radius h. As in 
the case of the square, this circle is the same whether the octagon is 
small or big. What works for the square (4-gon) and for the octagon 
(8-gon) works for the 100-gon and for the 1000-gon. 

between a square and a circle? Anyone who has studied calculus or 
Turtle geometry will have an immediate answer: polygons with 
more and more sides. So we look at Figure 17, which show strings 
around a series of polygonal earths. We see that the extra string 
needed remains the same in all these cases and, remarkably, we see 
something that might erode the argument that the circle adds 
something all around. The 1000-gon adds something at many more 
places than the square, in fact two hundred fifty times as many 
places. But it adds less, in fact one two hundred fiftieth at each of 
them. 

Now will your mind take the jump? Like GAL, I have said noth- 
ing so far to compel this crucial step by rigorous logic. Nor shall I. 
But at this point some people begin to waver, and I conjecture that 
whether they do or not depends on how firm a commitment they 
have made to the idea of polygonal approximations to a circle. For 
those who have made the polygonal representation their own, the 
equivalence of polygon and circle is so immediate that intuition is 
carried along with it. People who do not yet "own" the equivalence 
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between polygonal representation and circle can work at becoming 
better acquainted with it, for example, by using it to think through 

other problems. 
The following problem is taken from Martin Gardner 's  book, 

Mathematical Carnival: 

'If one penny rolls around another penny without slipping how many 
times will it rotate in making one revolution? One might guess the an- 
swer to be one, since the moving penny rolls along an edge equal to its 
own circumference, but a quick experiment shows that the answer is 
two; apparently the complete revolution of the moving penny adds an 
extra rotation.' 1 

Again there is a conflict between the intuitive guess (one revolu- 

tion) and the result of more careful investigation. How can one 

bring one's intuition into line? 
The same strategy works here as for the string around the earth 

problem. Roll a penny around a square without slipping. You will 
no t i ce tha t  it behaves quite differently as it rolls along the sides 
than when it pivots around the corners. It is easy to see that  the to- 
tal rotation at the four corners combined is 360 ° . This remains true 

for any polygon, however many sides it has and however big it is. 

And once more, the crucial step becomes the passage from the 
polygon to a Turtle circle to a true circle. 

I am not suggesting that one more exercise will change your in- 

tuition of circularity. Here too, as in the case of Aristotle's physics, 
the particular piece of knowledge is part of a large network of mu- 
tually supportive ways of thinking. I am suggesting that you keep 
this new way of thinking in mind for awhile, looking for opportuni- 
ties to use it as you might look for opportunities to introduce a new 
friend to old ones. And even then, I have no way of knowing wheth- 

er you want to change your intuition of circularity. But if it is to 
change I think that the process I am suggesting here is the best, 

perhaps the only, way whether it is adopted deliberately or simply 

happens unconsciously. 
I want you to go away from this book with a new sense of a 

child's value as a thinker, even as an "epistemologist" with a notion 
of the power of powerful ideas. But I also realize that these images 
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might seem abstract and even irritating to some of you, perhaps es- 
pecially those of you who teach children. 

For example, a third-grade teacher who spends many frustrating 
hours every day trying to teach thirty-six children to write gram- 
matical sentences and to do arithmetic might view my suggestions 

about Turtle geometry, physics microworlds, and cybernetics as far 
removed from reality, as far removed as was Marie Antoinette 
when she suggested that those who were starving for bread should 
eat cake. How are the powerful ideas we have discussed related to 
what most schools see as their bread-and-butter work, that is to 
say, the basic skills? 

A first connection works through the attitude of the learner. You 
can't learn bread-and-butter skills if you come to them with fear 
and the anticipation of hating them. When children who will not let 
a number into their head fail to learn arithmetic, the remedy must 

be developing a new relationship with numbers. Achieving this 
can put children in a positive relationship to anything else that they 
will recognize as being of the same kind. This can be school math- 
ematics. 

Kim was a fifth-grade girl who invariably came out on the bottom on 
all school arithmetic tests. She hated math. In a LOGO environment 
she became engrossed in programming. She designed a project that 
maintained a special database to store information about her family 
tree. One day a visiting educator remarked to her that "computers 
made math fun." Kim looked up from her work and said very angrily: 
"There ain't nothin' fun in math." The instructor in her class had not 
thought it advisable to discuss with her whether what she was doing 
with the computer was "math." Clearly, anything that was good was 
definitionally not math. But by the end of the year Kim made the con- 
nection herself and decided that mathematics was neither unpleasant 
nor difficult. 

Getting to know (and like) mathematics as you get to know (and 
like) a person is a very pertinent image of what happened in this 

case. Computers can also contribute to the learning of bread-and- 
butter arithmetic by changing our perception of what it is about, of 
what powerful ideas are most important in it. School arithmetic, 
generally thought of as a branch of number theory, might better be 
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thought of as a branch of computer science. Difficulties exper- 
ienced by children are not usually due to deficiencies in their notion 
of number but in failing to appropriate the relevant algorithms. 
Learning algorithms can be seen as a process of making, using, and 
fixing programs. When one adds multidigit numbers one is in fact 
acting as a computer in carrying through a procedure something 
like the program in Figure 18. 

1. 
2. 
3. 
4. 
5. 

, 

Set out numbers following conventional format. 
Focus attention on the rightmost column. 
Add as for single digit numbers. 
If result < 10 record results. 
If result in rightmost column was equal to or greater than 10, then 
record rightmost digit and enter rest in next column to left. 
Focus attention one column to left. 
Go to line 3. 

, , , 
_ 

Figure 18 

Q 

To get better at this sort of activity one needs to know more 
about, and feel more comfortable with, the ways of procedures. 
And this, of course, is what a good computer experience allows. 

These remarks should be put in the context of our earlier discus- 
sion about the difference between the New Math curriculum re- 
form of the 1960s and the kind of enrichment the computer culture 
can bring to mathematics. In chapter 2 we dealt with one impor- 
tant reason for the failure of the New Math: It did not ameliorate 
our society's alienated relationship with number. On the contrary, 
it aggravated it. We now see a second reason for the failure of the 
New Math. It tried to root the teaching of math in number theory, 
set theory, or logic instead of facing the conceptual stumbling 
blocks that children really experience: Their lack of knowledge 
about programming. Thus the authors of the New Math misunder- 
stood the source of children's problems. This misunderstanding is 
harmful in several ways. It is harmful insofar as it seeks to improve 
the child's understanding of arithmetic by drill in irrelevant areas 
of knowledge. It is also harmful insofar as it imparts an inappropri- 
ate value system into mathematics education. The pure mathemati- 
cian sees the idea of number as valuable, powerful, and important. 
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The details of procedure are seen as superficial and uninteresting. 
Thus the child's difficulties are referred back to abstract difficul- 
ties with the notion of number. The computer scientist takes a more 
direct approach. Trouble with adding is not seen as symptomatic of 
something else; it is trouble with the procedure of adding. For the 
computerist the procedure and the ways it can go wrong are fully 
as interesting and as conceptual as anything else. Moreover, what 
went wrong, namely the bugs, are not seen as mistakes to be avoid- 
ed like the plague, but as an intrinsic part of the learning process. 

Ken was a fifth grader who added 35 and 35 and got 610. His 
bug was showing clearly. Since 32 plus 32 is 64, then 35 plus 35 
should be 610. Ken was brought into a better relationship with 
mathematics when he learned to see his mistake as a trick that 
mathematical formalisms play on us. The French can say seventy 
as soixante dix, "sixty-ten," but although they can write sixty-five 
as 65, they cannot write sixty-ten as 610. This symbol has been pre- 
empted to mean something else. 

Ken might superficially appear to have had bad intuitions about 
numbers. But this is quite wrong as a diagnosis. When asked "If 
you had thirty-five dollars and you got thirty-five dollars more, 
would you have $610.00," his answer was an emphatic, "No way." 
When asked how much he would have, he returned to his paper cal- 
culation, crossed off the zero from 610, and came up with the new 
answer of 61, which intuitively is not so far off. His problem is not 
bad intuition or notion of number. From a computerist's point of 
view one can recognize several difficulties, each of which is under- 
standable and correctable. 

First, he dissociates the operation of the procedure from his gen- 
eral store of knowledge. A better procedure would have an "error 
check" built into it. Since he could recognize the error when 
prompted, he certainly should have been capable of setting up the 
procedure to include prompting himself. Second, when he found 
the error he did not change, or even look at, the procedure, but 
merely changed the answer. Third, my knowledge of Ken tells me 
why he did not try to change the procedure. At the time of this inci- 
dent he did not recognize procedures as entities, as things one could 
name, manipulate, or change. Thus, fixing his procedures is very 
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far indeed from his awareness. The idea of procedures as things 
that can be debugged is a powerful, difficult concept for many chil- 
dren, until they have accumulated experience in working with 
them. 

I have seen children like Ken get over this kind of dimculty after 
some experience writing programs in a LOGO environment. But 
why don't children learn a procedural approach from daily life? 
Everyone works with procedures in everyday life. Playing a game 
or giving directions to a lost motorist are exercises in procedural 
thinking. But in everyday life procedures are lived and used, they 
are not necessarily reflected on. In the LOGO environment, a pro- 
cedure becomes a thing that is named, manipulated, and recog- 
nized as the children come to acquire the idea of procedure. The ef- 
fect of this for someone like Ken is that everyday-life experience of 
procedures and programming now becomes a resource for doing 
formal arithmetic in school. Newton's laws of motion came alive 
when we used computational metaphor to tie them to more person- 
al and conceptually powerful things. Geometry came alive when we 
connected it to its precursors in the most fundamental human expe- 
rience: the experience of one's body in space. Similarly, formal 
arithmetic will come alive when we can develop links for the indi- 
vidual learner with its procedural precursors. And these precursors 
do exist. The child does have procedural knowledge and he does use 
it in many aspects of his life, whether in planning strategies for a 
game of tic-tac-toe or in giving directions to a motorist who has lost 
his way. But all too often the same child does not use it in school 
arithmetic. 

The situation is exactly like the one we met in the dialog between 
ARI and GAL and in the use of the Turtle circle model to change 
the intuition of circularity brought to bear on the string and coin 
problems. In all these cases, we are interested in how a powerful 
idea is made part of intuitive thinking. I do not know a recipe for 
developing a child's intuition about when and how to use procedur- 
al ideas, but I think that the best we can do is what is suggested by 
the metaphor of getting to know a new person. As educators we can 
help by creating the conditions for children to use procedural 
thinking effectively and joyfully. And we can help by giving them 
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access to many concepts related to procedurality. This is achieved 
through the conceptual content of LOGO environments. 

In this book I have clearly been arguing that procedural thinking 
is a powerful intellectual tool and even suggested analogizing one- 
self to a computer as a strategy for doing it. People often fear that 
using computer models for people will lead to mechanical or linear 
thinking: They worry about people losing respect for their intu- 
itions, sense of values, powers of judgment. They worry about in- 
strumental reason becoming a model for good thinking. I take these 
fears seriously but do not see them as fears about computers them- 
selves but rather as fears about how culture will assimilate the 
computer presence. The advice "think like a computer" could be 
taken to mean always think about everything like a computer. This 
would be restrictive and narrowing. But the advice could be taken 
in a much different sense, not precluding anything, but making a 
powerful addition to a person's stock of mental tools. Nothing is 
given up in return. To suggest that one must give up an old method 
in order to adopt a new one implies a theory of human psychology 
that strikes me as naive and unsupported. In my view a salient fea- 
ture of human intelligence is the ability to operate with many ways 
of knowing, often in parallel, so that something can be understood 
on many levels. In my experience, the fact that I ask myself to 
"think like a computer" does not close off other epistemologies. It 
simply opens new ways for approaching thinking. The cultural as- 
similation of the computer presence will give rise to a computer lit- 
eracy. This phrase is often taken as meaning knowing how to pro- 
gram, or knowing about the varied uses made of computers. But 
true computer literacy is not just knowing how to make use of com- 
puters and computational ideas. It is knowing when it is appropri- 
ate to do so. 
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